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Based on the phase-space generating functional of the Green function for a system with
a regular/singular Lagrangian, the quantal canonical Noether identities (NI) under the
local and non-local transformation in extended phase have been derived, respectively.
The result holds true whether the Jacobian of the transformation is equal to unity
or not. Based on the configuration-space generating functional of the gauge-invariant
system obtained by using Faddeev-Popov (FP) trick, the quantal NI under the local
and non-local transformation in configuration space have been also deduced. It is
showed that for a system with a singular Lagriangian one must use the effective action
in the quantal NI instead of the classical action in corresponding classical NI. It is
pointed out that in certain cases, the quantal NI may be converted into the quantal
(weak) conservation laws by using the quantal equations of motion. This algorithm to
derive the quantal conservation laws differs from the quantal first Noether theorem. The
preliminary applications of this formulation to Yang-Mills (YM) fields and non-Abelian
Chern-Simons (CS) theories are given. The quantal conserved quantities for non-local
transformation in YM fields are obtained. The conserved BRS and PBRS quantities at
the quantum level in non-Abelian CS theories are also found. The property of fractional
spin in CS theories is discussed.
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1. INTRODUCTION

Symmetry is now a fundamental concept in modern field theories. In classical
theories, the connection between the invariance of the action integral under finite
continuous group (global symmetry) and conservation laws is given by the first
Noether theorem. The classical second Noether theorem refers to the invariance
of an action integral under an infinite continuous group (local symmetry). In this
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case there exist some differential identities which involve variational derivatives
of the action integral, and these identities are called Noether identities (NI). They
play an important role in field theories (Li, 1993a). Classical Noether identities
and their generalization for non-local transformation are usually formulated in
terms of Lagrangian variables in configuration space (Li, 1993a, 1995a). Classical
Noether theorems in canonical formalism had been established in the previous
works (Li, 1991, 1993b, 1994a). These theorems are useful tools for the study
of the canonical system with constraints in Dirac’s sense, and the properties of
Lagrange multipliers connected with the first-class constraints and the invalidity of
Dirac’s conjecture had been discussed (Li, 1991, 1994a). When we apply them to
Yang-Mills theories, the classical NI may be converted into the conservation laws
along the trajectory of the motion (Li, 1991, 1993b, 1994a,b). In certain cases,
the quantized effective Lagrangian obtained by using Faddeev-Popov(FP) trick is
used to derive those conservation laws. Thus, the formulation is a semi-classical
theory which is not constructed in a totally quantum theory by making a thorough
investigation. Whether those results are valid at the quantum level needs further
study. The quantal canonical first Noether theorem had been also formulated in
the previous works (Li, 1995b, 1997; Li and Long, 1999). Now the quantal NI for
local and non-local transformation will be established, and some applications to
YM fields and CS theories will be given.

They are the kind of symmetries that we must consider when dealing with the
quantum system, the path integrals provide a useful tool where main ingredient is
the classical action together with the measure in the space of field configuration.
The phase-space path integrals are more basic than configuration-space path inte-
grals, the latter provide a Hamiltonian quadratic in canonical momenta, whereas
the former apply to arbitrary Hamiltonian (Mizrahi, 1978). In certain integrable
cases (for example, YM theories), phase-space integral can be simplified by car-
rying out explicit integration over canonical momenta. Then, the phase-space path
integral can be represented in the form of a path integral only over the coordinates
(or field variables) of the expression containing a certain Lagrangian (or effective
Lagrangian) in configuration space. In more general cases, especially for the con-
strained Hamiltonian system with complicated constraints, it is very difficult or
even impossible to carry out the path integral over the canonical momenta. Thus,
the study of symmetry in phase-space path integral formulation has a more fun-
damental sense. The phase-space path integral formalism makes the symmetries
of the system manifest in quantum theories.

Local gauge invariance is a central concept in modern field theories. A system
with a gauge-invariant Lagrangian is subject to some inherent phase-space con-
straints, which is a constrained Hamiltonian system. The path-integral quantization
of this system can be formulated with aid of the Dirac theory of constrained system
and the method of the path (functional) integration (Batalin and Vilkvisky, 1977,
1983; Faddeev, 1970; Fradkin and Fradkin, 1978; Fradkin and Vilkovisky, 1975;
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Gomis et al., 1995; Henneaux, 1985; Senjanovic, 1976). However, for a gauge-
invariant system one can conveniently use the FP trick (Faddeev and Popov, 1967)
to formulate its path-integral quantization in configuration space. In certain cases,
according to the path-integral quantization of the constrained Hamiltonian system,
one can carry out explicit integration of canonical momenta in the phase-space
path integral which may be coverted to the same results obtained by using the FP
trick (for example, YM theories). Although the FP trick is not a rigorous method,
it is a simple and more useful method for the gauge theories.

In this paper, based on the phase-space generating functional of the Green
function, the canonical NI under the local and non-local transformation at the
quantum level have been derived. For the gauge-invariant system, based on
configuration-space generating functional obtained by using FP trick, the quantal
NI under the local and non-local transformation in configuration space are also de-
duced. The results hold true no matter whether the Jacobian of the transformation
is equal to unity or not. The expressions of quantal NI differ from classical ones
for a system with a singular Lagrangian in that one must use quantized effective
action instead of classical action in corresponding expressions. It is pointed out
that in certain cases based on the quantal NI, one can obtain quantal conservation
laws of the system, this algorithm to derive quantal conservation laws makes a
thorough study in quantum theory which is totally different from quantal first
Noether theorem. Finally, we give some applications of above results to the YM
fields and CS theories.

The paper is organized as follows. In Section 2, the quantal canonical NI
under the local and non-local transformation in phase space have been derived.
These identities coincide with classical ones for a regular Lagrangian, but for a
singular Lagrangian one must use IP

eff instead of IP in those identities. In Section
3, based on quantal canonical Noether identities, in a certain case the existence
of strong and weak conserved laws have been discussed. In Section 4, quantal NI
under the local and non-local transformation in configuration space for a gauge-
invariant system have been deduced, and the quantal conserved laws connected
with these identities are also discussed. The applications of above formulation to
YM fields are given in Section 5, some quantal conserved quantities for local and
non-local transformation are obtained. In Section 6, we give some applications
to non-Abelian CS theories with Maxwell term, the quantal BRS and PBRS
conserved quantity and quantal conserved angular momentum are obtained, and
property of fractional spin at quantum level for non-Abelian CS theories needs
further study. Section 7 is devoted to conclusions and discussion.

2. QUANTAL CANONICAL NOETHER IDENTITIES

Let us first consider a physical field defined by the field variable ϕ(x)
(ϕ(x) represents all field variables) and the motion of field described by a
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regular Lagrangian density L(ϕ, ϕ′µ), ϕ′µ = ∂µϕ = ∂ϕ/∂xµ, where x = (t, �x).
The flat space-time metric is gµν = ( 1 −1 −1 −1 ). The canonical Hamiltonian
HC = ∫

d3xHC = ∫
d3x(πϕ̇ − L) is a functional of independent canonical vari-

ables ϕ(x) and π (x), where π (x) = ∂ L/∂ϕ̇(x) is a canonical momenta conjugating
to ϕ(x), HC is a canonical Hamiltonian density. We adopt the path-integral quanti-
zation for the system. The phase-space generating functional of the Green function
in the form of a path (functional) integral is (Li, 1994c)

Z[J,K] =
∫

Dϕ Dπ exp

{

i

∫
d4x(LP + Jϕ + Kπ )

}

(2.1)

where

LP = πϕ̇ − HC (2.2)

and J, K are the exterior sources with respect to ϕ and π respectively. Here we
have also introduced the exterior source K with respect to canonical momenta π ,
which does not alter the calculation of the Green function G

G(x1, x2, . . . , xn) = 1

in

δnZ[J,K]

δJ (x1)δJ (x2) · · · δJ (xn)

∣
∣
∣
∣
J=K=0

(2.3)

Based on the phase-space generating functional, the canonical first Noether
theorem at the quantum level have been established for global symmetries (Li,
1995b, 1997; Li and Long, 1999). Now we further discuss local and non-local
transformation. Local gauge invariance is a basic concept in modern field theories,
and non-local transformations in field theories also have been introduced (Fradkin
and Palchik, 1984; Kuang and Yi, 1980; Li and Long, 1999; Rabello and Gaete,
1995). Let us consider the transformation properties of the system under the
local and non-local transformation in extended phase space, whose infinitesimal
transformation is given by

⎧
⎨

⎩

xµ′ = xµ + �xµ = xµ + Rµ
σ εσ (x)

ϕ′(x ′) = ϕ(x) + �ϕ(x) = ϕ(x) + Sσ εσ (x) + ∫
d4xE(x, y)Aσ (y)εσ (y)

π ′(x ′) = π (x) + �π (x) = π (x) + Tσ εσ (x) + ∫
d4xF (x, y)Bσ (y)εσ (y)

(2.4)
where E(x, y) and F(x, y) are some functions, Rµ

σ , Sσ , Tσ , Aσ and Bσ are linear
differential operators, for example,

Rµ
σ = rµν...λ

σ ∂ν, . . . , ∂λ, etc. (2.5)

where the summation over the repeat indices is taken, and rµν...λ
σ are functions of

x, ϕ and π , and εσ (x) (σ = 1, 2, . . . , r) are arbitrary infinitesimal functions, and
their values and derivatives up to required order vanish on the boundary of the
space-time domain. The Jacobian of the transformation of the canonical variables
defined by (2.4) is denoted by J̄ [ϕ, π, ε] = 1 + J1[ϕ, π, ε], where J1 is also an
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infinitesimal quantity. It is supposed that the variation of the canonical action
integral under the transformation (2.4) is given by

�IP = �

∫
d4x LP =

∫
d4xUσεσ (x) (2.6)

where Uσ are also linear differential operators. Under the transformation (2.4),
from the expression (2.1) of the phase-space generating functional and (2.6), one
obtains

∫
Dϕ Dπ (1 + J1 + i�IP + i

∫
d4x{Jδϕ + Kδπ + ∂µ[(Jϕ + Kπ )�xµ]})

× exp{i
∫

d4x(LP + Jϕ + Kπ )} (2.7)

=
∫

DϕDπ (1 + J1 + i

∫
d4x{Uσεσ (x) + Jδϕ + Kδπ + ∂µ[(Jϕ + Kπ )�xµ]})

× exp{i
∫

d4x(LP + Jϕ + Kπ )}

where (Li, 1993a)

�IP =
∫

d4x

{
δIP

δϕ
δϕ + δIP

δπ
δπ + D(πδϕ) + ∂µ[(πϕ̇ − HC)�xµ]

}

(2.8)

δIP

δϕ
= −π̇ − δHC

δϕ
,

δIP

δπ
= ϕ̇ − δHC

δπ
(2.9)

δϕ = �ϕ − ϕ′µ�xµ, δπ = �π − π′µ�xµ (2.10)

where D = d/dt . According to the boundary condition of the functions εσ (x),
from (2.7) and (2.8), one gets

∫
DϕDπ

[
δIP

δϕ
δϕ + δIP

δπ
δπ + D(πδϕ) − Uσεσ (x)

]

exp

{

i

∫
d4x(LP + Jϕ + Kπ )

}

= 0 (2.11)

We substitute (2.4) and (2.10) into (2.11), and integrate by parts for corresponding
terms, then functionally differentiate the results with respect to εσ (x), according
to the boundary condition of the functions εσ (x), we obtain

∫
Dϕ Dπ

(

S̃σ (x)

(
δIP

δϕ(x)

)

+ T̃σ (x)

(
δIP

δπ (x)

)

−R̃µ
σ (x)

[

ϕ′µ(x)
δIP

δϕ(x)
+ π′µ(x)

δIP

δπ (x)

]
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+
∫

d4z

{

Ãσ (z)

[

E(z, x)
δIP

δϕ(z)
+ D(π (z)E(z, x))

]

+ B̃σ (z)

(

F (z, x)
δIP

δπ (z)

)}

− Ũσ (1)

)

× exp

{

i

∫
d4x(LP + Jϕ + Kπ )

}

= 0 (2.12)

where S̃σ , T̃σ , R̃µ
σ , Ãσ , B̃σ and Ũσ are adjoint operators with respect to

Sσ , Tσ , Rµ
σ ,Aσ , Bσ and Uσ respectively (Li, 1987). For example,

∫
f Rµ

σ gd4x =∫
gR̃µ

σ f d4x + [·]B , where [·]B stands for boundary terms.
Functionally differentiating (2.12) with respect to J(x) a total of n times, one

obtains
∫

Dϕ Dπ

(

S̃σ (x)

(
δIP

δϕ(x)

)

+ T̃σ (x)

(
δIP

δπ (x)

)

−R̃µ
σ (x)

[

ϕ′µ(x)
δIP

δϕ(x)
+ π′µ(x)

δIP

δπ (x)

]

+
∫

d4z

{

Ãσ (z)

[

E(z, x)
δIP

δϕ(z)
+ D (π (z)E(z, x))

]

+ B̃σ (z)

(

F (z, x)
δIP

δπ (z)

)}

− Ũσ (1)

)

×ϕ(x1)ϕ(x2) · · · ϕ(xn) exp

{

i

∫
d4x(LP + Jϕ + Kπ )

}

= 0 (2.13)

Let J = K = 0 in (2.13), one gets

〈0∣
∣T ∗

(

S̃σ (x)

(
δIP

δϕ(x)

)

+ T̃σ (x)

(
δIP

δπ (x)

)

−R̃µ
σ (x)

[

ϕ′µ(x)
δIP

δϕ(x)
+ π′µ(x)

δIP

δπ (x)

]

+
∫

d4z{Ãσ (z)

[

E(z, x)
δIP

δϕ(z)
+ D

(

π (z)E(z, x)

)]

+B̃σ (z)

(

F (z, x)
δIP

δπ (z)

)

− Ũσ (1)

)

·ϕ(x1)ϕ(x2) · · ·ϕ(xn))
∣
∣0

〉

= 0 (2.14)
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where the symbol T
∗

stands for covariantized T product (Young, 1987), in which
derivatives of operators inside a T-product are defined in terms of the formula, i.e.

〈0|T ∗[∂µϕ(x)∂νϕ(y) . . .]|0〉 = ∂µ∂ν 〈0|T [ϕ(x)ϕ(y) . . .]|0〉
and |0〉 is the vacuum state of the fields. Fixing t and letting t1, t2, . . . , tm → +∞,
tm+1, tm+2, . . . , tn → −∞, noting ϕ(

⇀

x,−∞)|0〉 = |in〉, ϕ(
⇀

x,∞)|0〉 = 〈out|, and
using the reduction formula (Young, 1987), we can write expression (2.14) as

〈
out,m

∣
∣
(

S̃σ (x)

(
δIP

δϕ(x)

)

+ T̃σ (x)

(
δIP

δπ (x)

)

−R̃µ
σ (x)

[

ϕ′µ(x)
δIP

δϕ(x)
+ π′µ(x)

δIP

δπ (x)

]

+
∫

d4z

{

Ãσ (z)

[

E(z, x)
δIP

δϕ(z)
+ D

(

π (z)E(z, x)

)]}

+B̃σ (z)

(

F (z, x)
δIP

δπ (z)

)

− Ũσ (1)

)∣
∣n − m, in

〉
= 0 (2.15)

Since m and n are arbitrary, one obtains

S̃σ (x)

(
δIP

δϕ(x)

)

+ T̃σ (x)

(
δIP

δπ (x)

)

− R̃µ
σ (x)

(

ϕ′µ(x)
δIP

δϕ(x)
+ π′µ(x)

δIP

δπ (x)

)

+
∫

d4z

{

Ãσ (z)

[

E(z, x)
δIP

δϕ(z)
+ D

(

π (z)E(z, x)

)]

+B̃σ (z)

(

F (z, x)
δIP

δπ (z)

)}

− Ũσ (1) = 0 (2.16)

These expressions are called quantal canonical NI under the local and nonlocal
transformation (2.4) for a system with a regular Lagrangian. For the case E =
F = 0, the transformation (2.4) will be converted into a local one, and (2.16) can
be written as

S̃σ (x)

(
δIP

δϕ(x)

)

+ T̃σ (x)

(
δIP

δπ (x)

)

− R̃µ
σ (x)

[

ϕ′µ(x)
δIP

δϕ(x)
+ π′µ(x)

δIP

δπ (x)

]

−Ũσ (1) = 0 (2.17)

This expresions coincide with the classical NI (Li, 1993c) whether the Jacobian
of the transformation (2.4) is equal to unity or not.

Let us now consider a system with a Singular Lagrangian L(ϕα
′ , ϕα

′µ) whose
Hessian matrix[Hαβ] = [∂2L/∂ϕ̇α∂ϕ̇β] is degenerate. Using the Legendre trans-
formation, one can go over from the Lagrangian description to the Hamiltonian
description, and the motion of the system is described by the canonical variables,
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which is subject to some inherent phase-space constraints and is called constrained
Hamiltonian system. Let k(ϕα, πα) ≈ 0 (k = 1, 2, . . . , K1) be first-class con-
straints, and θi(ϕα, πα) ≈ 0 (i = 1, 2, . . . , I1) be second-class constraints. The
path-integral quantization for this system can be formulated by using Batalin–
Fradkin–Vilkovisky (BFV) scheme (Batalin and Vilkvisky, 1977; Fradkin and
Fradkin, 1978; Fradkin and Vilkovisky, 1975; Henneaux, 1985), or Batalin-
Vilkovisky (BV) scheme (Batalin and Vilkovisky, 1983; Gomis et al., 1995),
or Faddeev–Senjanovic (FS) scheme (Faddeev, 1970; Senjanovic, 1976), but the
latter is more convenient. According to FS path-integral quantization scheme,
the gauge conditions connecting with the first-class constraints can be chosen as
�i(ϕα, πα) ≈ 0 (k = 1, 2, . . . , K1), the phase-space generating functional of the
Green function for this constrained Hamiltonian system can be written as

Z[J,K] = ∫
DϕαDπα �

i,k,l
δ(θi)δ(k)δ(�l) det |{k, �l}| ·

[ det |{θi, θj }|]1/2 exp
{
i
∫

d4x(LP + Jαϕα + Kαπα)
} (2.18)

where {·, ·} represents Poission bracket, Jα and Kα are the exterior sources with
respect to ϕα and Kα , respectively (Li, 1994c). Using the δ-function and integral
properties of the Grassmann variables Ca(x) and C̄b(x), one can write (2.18) as
(Li, 1994c)

Z[J,K, ηm, j̄ , k̄, j, k] = ∫
DϕαDπαDλmD C̄aDπaD CaDπ̄ a

· exp
{
i
∫

d4x
(
LP

eff + Jαϕα + Kαπα + ηmλm + j̄ aCa + k̄aπ
a + C̄aj

a + π̄ aka

)}

(2.19)
where

LP
eff = LP + Lm + Lgh (2.20)

Lm = λkk + λl�l + λiθi (2.21)

Lgh =
∫

d4y

[

C̄k(x){k(x),�l(y)}Cl(y) + 1

2
C̄i(x){θi(x), θj (y)}θj (y)

]

(2.22)

and λm = (λk, λl, λi), π̄ a(x) and πb(x) are canonical momenta conjugate to Ca(x)
and C̄b(x), respectively. ηm, j̄ a, k̄a, j

a and ka are exterior sources with respect
to λm,Ca, π

a, C̄a and π̄ a respectively, and LP
eff is called a quantized effective

canonical Lagrangian density. For the sake of simplicity, let us denote ϕ =
(ϕα, λm,Ca, C̄a), π = (πα, π̄a, πa), J = (Jα, ηm, ja, j̄ a), and K = (Kα, ka, k̄a),
thus, the expression (2.18) can be written as

Z[J,K] =
∫

Dϕ Dπ exp

{

i

∫
d4x

(
LP

eff + Jϕ + Kπ
)
}

(2.23)

For a system with a singular Lagrangian, one can still proceed in the same way as
for a system with a regular Lagrangian to deduce the quantal canonical NI under
the local and nonlocal transformation in phase space, but in this case one must
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use IP
eff instead of IP in the expressions (2.6)–(2.9) and (2.11)–(2.17). In classical

theories, the canonical NI for singular Lagrangian are coincide with those ones
for regular Lagrangian. But, for a system with a singular Lagrangian, the quantal
canonical NI have the same form as expression (2.16) or (2.17) in which one must
use IP

eff instead of IP in (2.16) and (2.17).
Thus, we have identity relations (2.16) and (2.17) between the functional

derivatives and their derivatives, and this leads to a reduction in the number of
independent functional derivatives δIP

eff/δϕ and δIP
eff/δπ .

3. QUANTAL CONSERVATION LAWS

Using the quantal canonical NI, for certain cases one can obtain quantal
strong conservation laws which hold true no matter whether the equations of
motion at the quantum level are satisfied. Using the quantal equations of motion
of the system, one can obtain quantal weak conservation laws. In order to study
the applications of the quantal canonical NI to the YM fields and CS theories, we
consider the following infinitesimal local transformation

⎧
⎨

⎩

�xµ = 0
δϕ(x) = bσ εσ (x) + bµ

σ ∂µεσ (x)
δπ (x) = cσ εσ (x) + cµ

σ ∂µεσ (x)
(3.1)

where bσ , bµ
σ , cσ and cµ

σ are smoothed functions of x, ϕ and π , and εσ (x) (σ =
1, 2, . . . , r) are arbitrary infinitesimal functions. It is supposed that the change of
the effective canonical Lagrangian density LP

eff is given by

δLP
eff = uσ εσ (x) = (

uσ + uµ
σ ∂µ + uµν

σ ∂µ∂ν

)
εσ (x) (3.2)

under the transformation (3.1) where uσ , uµ
σ and uµν

σ are some functions of x, ϕ

and π . For example, some models in the massive Yang–Mills theories belong to
this category. The quantal canonical NI (2.17) in this case becomes

bσ

δIP
eff

δϕ
− ∂µ

(

bµ
σ

δIP
eff

δϕ

)

+ cσ

δIP
eff

δπ
− ∂µ

(

cµ
σ

δIP
eff

δπ

)

= uσ − ∂µuµ
σ + ∂µ∂νu

µν
σ

(3.3)
From the variation of the effective canonical action under the transformation (3.1),
one has

δIP
eff

δϕ

(
bσ + bµ

σ ∂µ

)
εσ (x) + δIP

eff

δπ

(
cσ + cµ

σ ∂µ

)
εσ (x)

+ d

dt

[
π

(
bσ + bµ

σ ∂µ

)
εσ (x)

] = (
uσ + uµ

σ ∂µ + uµν
σ ∂µ∂ν

)
εσ (x) (3.4)

Multiplying identities (3.3) by εσ (x) and summing up with index σ from 1 to r
and substracting the result from the basic identity (3.4), if the indices µ, ν of the
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coefficients uµν
σ are symmetrical, then one obtains

∂µ

[(

bµ
σ

δIP
eff

δϕ
+ cµ

σ

δIP
eff

δπ
− uµ

σ + ∂νu
µν
σ − uµν

σ ∂ν

)

εσ (x)

]

+ d

dt

[
π

(
bσ + bµ

σ ∂µ

)
εσ (x)

] = 0 (3.5)

Taking the integral of the identity (3.5) on t = const like-space hepersurface, one
gets the strong conservation law:

Q =
∫

ν

jσ εσ (x)d3x = const (3.6)

where

jσ = b0
σ

δIP
eff

δϕ
+ c0

σ

δIP
eff

δπ
− u0

σ + ∂νu
0ν
σ − u0ν

σ ∂ν + π
(
bσ + bµ

σ ∂µ

)
(3.7)

This conservation law is independent of whether the ϕ and π are a solution of the
quantal canonical equations of the constrained Hamiltonian system.

If the transformation group has a subgroup and εσ (x) = ε
ρ

0 ξσ
ρ (x), where

ε
ρ

0 (ρ = 1, 2, . . . , s) are numerical parameters of the Lie group, and ξσ
ρ (x) are

some functions. For example, BRS transformation in YM theories and the trans-
formation in the discussion of gauge-invariant energy-momentum tensor belong
to this category. In this circumstances, the strong conservation law (3.6) becomes:

Qρ =
∫

ν

jσ ξσ
ρ d3x = const (ρ = 1, 2, . . . , s) (3.8)

Using the quantal canonical equations of the motion, one has (Li, 1997; Li and
Long, 1999) δIP

eff/δϕ = 0, δIP
eff/δπ = 0. From the expression (3.8), one can get

the (weak) conservation laws at the quantum level. If the effective canonical
action is invariant under the corresponding transformation, then, these quantal
conservation laws coincide with the results deriving from the quantal canonical
first Noether theorem for the global symmetry transformation in phase space (Li,
1997). Thus, we have seen that the quantal canonical NI may be converted into
quantal (weak) conservation laws in certain cases even if the effective canonical
action of the system is not invariant under the specific local transformation. This
algorithm deriving quantal conservation laws makes a thorough study in quantum
theory which differs from the canonical first Noether theorem at the quantum level
(Li, 1997).

4. GAUGE-INVARIANT SYSTEM

As is well known, a gauge-invariant system is a constrained Hamiltonian
sysetm (Li, 1993a). The quantization of such a system can be formulated by using
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FP scheme, the effective Lagrangian Leff in configuration space can be found
by using the FP trick through a transformation of the path (functional) integral
(Faddeev and Popov, 1967), Leff = L + Lf + Lgh, where L is a gauge-invariant
Lagrangian, Lf is determined by the gauge conditions and Lgh is a ghost term. The
configuration-space generating functional of the Green function for this system
can be written as

Z[J ] =
∫

D ϕ exp

{

i

∫
d4x(Leff + Jϕ)

}

(4.1)

where ϕ represents all field variables, and J is a exterior source with respect
to ϕ. For some models in field theories, the expression (4.1) can be obtained by
carrying out explicit integration over canonical momenta in phase-space generating
functional for the constrained Hamiltonian system (for example, YM theories).

Let us now consider the transformation properties of the configuration-space
generating functional under general local and non-local transformation, whose
infinitesimal transformation is given by
{

xµ′ = xµ + �xµ = xµ + Rµ
σ εσ (x)

ϕ′(x ′) = ϕ(x) + �ϕ(x) = ϕ(x) + Sσ εσ (x) + ∫
d4yE(x, y)Nσ (y)εσ (y)

(4.2)

where εσ (x) (σ = 1, 2, . . . , r) are arbitrary infinitesimal independent functions,
the values of εσ (x) and their derivatives up to required order on the boundary of
space-time domain vanish, and Rµ

σ , Sσ and Nσ are linear differential operators.
Under the transformation (4.2), it is supposed that the variation of the effective
action is given by

�Ieff = �

∫
d4xLeff =

∫
d4xVσ ε6(x) (4.3)

where Vσ are some linear differential operators. The Jacobian of the transfor-
mation (4.2) is denoted by J = I + J1[ϕ, ε]. Under the transformation (4.2), the
generating functional (4.1) becomes

Z[J, ε] =
∫

D ϕ
{
I + J1 + i�Ieff + i

∫
d4x[Jδϕ + ∂µ(Jϕ�xµ)]

}

× exp{i
∫

d4x(Leff + Jϕ)} (4.4)

where

�Ieff =
∫

d4x

[
δIeff

δϕ
δϕ + ∂µ

(
∂ Leff

∂ϕ′µ
δϕ

)

+ ∂µ(Leff�xµ)

]

(4.5)

δIeff

δϕ
= ∂ Leff

∂ϕ
− ∂µ

(
∂ Leff

∂ϕ′µ

)

(4.6)
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δϕ = �ϕ − ϕ′µ�xµ (4.7)

According to the boundary conditions of the εσ (x), from (4.2)–(4.7), one obtains
∫

Dϕ

{
δIeff

δϕ

[
(
Sσ − ϕ′µRµ

σ

)
εσ (x) +

∫
d4yE(x, y)Nσ (y)εσ (y)

]

+∂µ

[
∂Leff

∂ϕ‘µ

∫
d4yE(x, y)Nσ (y)εσ (y)

]

− Vσεσ (x)

}

× exp

{

i

∫
d4x[Leff + Jϕ)

}

= 0 (4.8)

One repeats the integration by part of the terms concerning the differential oper-
ators Sσ , Rµ

σ ,Aσ and Vσ in expression (4.8), appealing to the arbitrariness of the
εσ (x), one can force the boundary terms to vanish. After this one can functionally
differentiate the obtained result with respect to εσ (x), one gets

∫
Dϕ

{

S̃σ

(
δIeff

δϕ(x)

)

− R̃µ
σ

(

ϕ′µ(x)
δIeff

δϕ(x)

)

+
∫

d4yÑσ

[

E(y, x)
δIeff

δϕ(y)

+∂µ

(

E(y, x)
∂Leff

∂ϕ′µ(y)

) ]

− Ṽσ (1)

}

exp{i
∫

d4x(Leff + Jϕ)} = 0 (4.9)

where S̃σ , R̃µ
σ , Ãσ and Ṽσ are the adjoint operators with respect to Sσ , Rµ

σ ,Aσ and
Vσ , respectively (Li, 1987). Functionally differentiating (3.9) with respect to J(x)
n times, one can proceed the same way as discussed in Section 2 to obtain

S̃σ

(
δIeff

δϕ(x)

)

− R̃µ
σ

(

ϕ′µ(x)
δIeff

δϕ(x)

)

+
∫

d4yÑσ

[

E(y, x)
δIeff

δϕ(y)
+ ∂µ

(

E(y, x)
∂ Leff

∂ϕ′µ(y)

)]

−Ṽσ (1) = 0 (σ = 1, 2, . . . , r) (4.10)

The expression (4.10) are called quantal NI in configuration space for gauge-
invariant system under the local and non-local transformation. For the local trans-
formation (E = 0 in (4.2)), from (4.10) one has

S̃σ

(
δIeff

δϕ

)

− R̃µ
σ

(

ϕ,µ

δIeff

δϕ

)

− Ṽσ (1) = 0 (4.11)

The identities (4.11) differ from classical ones in that the action in quantial NI is
an effective action Ieff , but not a classical one I.

Now, let us consider following infinitesimal local transformation
{

�xµ = 0

δϕ(x) = (
bσ + bµ

σ ∂µ

)
εσ (x)

(4.12)
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where εσ (x) (σ = 1, 2, . . . , r) are arbitrary infinitesimal functions. It is supposed
that the change of the effective Lagrangian Leff is given by

δLeff = Vσ εσ (x) = (
vσ + vµ

σ + vµν
σ ∂µ∂ν

)
εσ (x) (4.13)

under the transformation (4.12), where vσ , vµ
σ and vµν

σ are some functions of
x, ϕ and ϕ′µ. From the quantal NI (4.11) and the variation of an effective action
Ieff , one can also deduce the strong conservation laws as did in the Section 3. If
εσ (x) = ε

ρ

0 ζ σ
ρ (x) in the case, the strong conservation laws become

Qσ =
∫

V

d3x

[
∂ Leff

∂ϕ′0

(
bρ + bν

ρ∂ν

) + b0
ρ

δIeff

δϕ
− v0

ρ + ∂νv
0ν
ρ − v0ν

ρ ∂ν

]

ζ ρ
σ = const

(4.14)

Using the quantal equations of the motion of the system (Li, 1993a; Young, 1987),
δIeff/δϕ = 0, from (4.14) one gets the following quantal weak conservation laws,

Qσ =
∫

V

d3x

[
∂Leff

∂ϕ′0

(
bρ + bν

ρ∂ν

) − v0
ρ + ∂νv

0ν
ρ − v0ν

ρ ∂ν

]

ζ ρ
σ = const (4.15)

Thus, we see that if the effective action Ieff for a gauge-invariant system is invariant
under the conressponding transformation, these quantal weak conservation laws
coincide with the conservation laws at the quantum level deriving from the global
symmetry transformation (Li and Gao, 1999).

In the following sections we shall give some applications of above formulation
to the YM fields and CS theories.

5. YANG–MILLS FIELDS

In YM theories, the Lagrangian is gauge-invariant, the Lagrangian without
ghosts violates unitarity, the effective Lagrangian in configuration space can be
obtained by using the FP trick in the Lorentz gauge through a transformation of
the path integral,

Leff = −1

4
Fµν

a F a
µν + 1

2α0

(
∂µAa

µ

)2 − ∂µC̄aD
a
µbCb (5.1)

where

Fa
µν = ∂µAa

ν − ∂νA
a
µ + f a

bcA
b
µAc

ν (5.2)

Da
µb = δa

b∂µ + f a
cbA

c
µ (5.3)

and Aa
µ are YM fields, f a

bc are structure constants of the gauge group, Ca and C̄a

are odd ghost fields, and α0 is a parameter.
Now we study the quantal NI for the non-local transformation to conser-

vation laws in YM theories. It is easy to check that the first term and third term
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in the effective Lagrangian (5.1) are invariant under the following non-local
transformation (Li, 1997)
{
Aa′

µ (x) = Aa
µ(x) + Da

µσ εσ (x) (5.4a)

C
′
a(x) = Ca(x) + i(Tσ )abCb(x)εσ (x) (5.4b)

C̄
′
a(x) = C̄a(x) − iC̄b(Tσ )abε

σ (x) + i

�∂µ[C̄b(x)(Tσ )ab∂
µεσ (x)] (5.4c)

where Tσ are representation matrices of the generators of the gauge group.
Equation (4.4c) can be reduced to

C̄
′
a(x) = Ca(x) − iC̄b(x)(Tσ )abε

σ (x) + i

∫
{d4y�0(x, y)∂µ[C̄b(y)(Tσ )ab}∂µεσ (y)]

(5.4c′)

where

��0(x, y) = iδ4(x − y) (5.5)

The transformation (5.4c′) is a non-local one. Under the transformation (5.4a),
(5.4b) and (5.4c′), from the quantal NI (4.10) and the effective Lagrangian (5.1),
one obtains

D̃a
µσ

(
δIeff

δAa
µ(x)

)

+ i(Tσ )ab
δIeff

δCa(x)
Cb(x) − iC̄b(x)(Tσ )ab

δIeff

δC̄a(x)

+
∫

d4yÑa
σ (x)

[

∂µ

(
∂Leff

∂C̄′µ

)

�0(y, x)

]

= 1

α0
D̃a

σν[∂ν(∂µAa
µ)] (5.6)

where

D̃a
σµ = −δa

σ ∂µ + f a
σcA

c
µ (5.7)

Na
σ (x) = i∂µ

[
C̄b(x)(Tσ )ab∂

µ
]

(5.8)

Under the Lorentz gauge, using the quantal equation of motion, from (5.6), one has

∂xµ

∫
d4yC̄b(x)(Tσ )ab∂xµ

[

∂yµ

(
∂Leff

∂C̄a,yµ

)

�0(y, x)

]

= 0 (5.9)

This leads to the conserved quantity at the quantum level

Q′
σ =

∫

V

d3x

∫
d4yC̄b(x)(Tσ )ab∂x0

[

∂yµ

(
∂Leff

∂Ca
,yµ

)

�0(y, x)

]

= const (5.10)
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Substituting (5.1) into (5.10), one get

Q′
σ =

∫

V

∫
d3xd4yC̄b(x)(Tσ )ab

(
∂νD

aν
e Ce

)
∂x0�0(y, x) = const (5.11)

A system with a gauge-invariant Lagrangian is a constrained Hamillonian
system, the path-integral quantization of this system can be formulated by using
FS scheme (Faddeev, 1970; Senjanovic, 1976). In the coulomb gauge the phase-
space generating functional of Green function for YM field can also be written as
(the theory is gauge independent) (Li, 1994c)

Z[J ] =
∫

D Aa
µDπµ

a D C̄a DCaDλa
k

exp

{

i

∫
d4x

[
LP

eff + Jµ
a Aa

µ + C̄aJa + J̄aC
a + J a

k λa
k

]
}

(5.12)

where

LP
eff = Lp + Lm + Lgh (5.13)

LP = πµ
a Ȧa

µ − HC (5.14)

Lm = λa
k

a
k − 1

2αk

(
�a

k

)2
(k = 1, 2) (5.15)

Lgh = −∂µC̄aDa
µbC

b (5.16)

where a
k and �a

k are constraints and gauge conditions. It is easy to check that
Lpand Lgh are invariant under transformation (5.4). We use εσ (x) = ενAσ

ν (x) in
the transformation (5.4), where ενare numerical parameters. Since the variations
of the first-class constraints under the gauge transformation (5.4a) are within the
constraint hypersurface (Li, 1993c), thus, δLm ≈ 0 under the transformation (5.4).
Therefore, δIp

eff ≈ 0 under the transformation (5.4), where the sign≈ means equal-
ity on the constraint hypersurface (including gauge constraints). Using the quantal
canonical equations, from (3,8), one obtains the quantal conserved quantities

Qv =
∫

d3x
{
πµ

a Da
µσAσ

ν + iπa(Tσ )abC
bAσ

ν − iπ̄aC̄
b(Tσ )abA

σ
ν

+π̄a

∫
d4y�0(x, y)∂µ[C̄b(y)(Tσ )ab∂

µAσ
ν (y)]} (5.17)

where πa and π̄a are canonical momenta with respect to Ca and C̄a respectively.
Thus, we have shown that for certain cases by using the quantal equations

of motion the quantal NI (or strong conservation laws) may be converted into the
weak conservation quantities even if the effective Lagrangian is not invariant under
the specific transformation. This algorithm to deduce the quantal conservation laws
is different from quantal first Noether theorem (Li, 1997; Li and Gao, 1999).
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6. NON-ABELIAN CHERN-SIMONS THEORIES

A lot of recent work on (2 + 1)-dimensional Chern–Simons (CS) gauge
theories revealed the occurrence of fractional spin and statistics (Banerjee, 1994;
Kim et al., 1994; Li, 1999). This may be related to the fractional quantun Hall
effect and Tc-superconductivity (Lerda, 1992). However, in the present study of
CS theories coupled to the matter fields, some basic problems need clarifying.
First, in the Hamiltonian analysis of the models, the gauge field was eliminated
by using classical equations of motion and gauge conditions, but the constraints
associated with the gauge field are unaccounted. Hence the question, is this result
equivalent to the original model at the quantum level (Banerjee and Chakraborty,
1994)? Second, in the discussion of the angular momenta for anyons, the results
were deduced by using classical Noether theorem (Banerjee, 1994; Kim et al.,
1994). Whether they are valid at the quantum level. Third, some authors have
putted forward that whether the properties of angular momenta for anyons still
survive in the Maxwell–Chern–Simons theories (Kim et al., 1994), which is need
further study.

Let us now consider the (2 + 1)-dimensional non-Abelian CS term coupled
to the scalar field with the Maxwell term whose Lagrangian is given by

L = −1

4
Fa

µνF
aµν + (Dµϕ)+(Dµϕ) + κ

4π
εµνρ

(

∂µAa
νA

a
ρ + 1

3
f a

bcA
a
µAb

νA
c
ρ

)

(6.1)
where

Fa
µν = ∂µAa

µ − ∂νA
a
µ + f a

bcA
b
µAc

µ (6.2)

and ϕ is an N-component scale field, Dµ = ∂µ − iT aAa
µ, Ta are generator of

gauge group, [T a, T b] = if a
bcT

c, tr(T aT b) = 1
2δab, The gauge invariance of non-

Abelian CS term requires the parameter κ = n
4π

(n ∈ Z) (Deser et al., 1982).
First of all we formulate the path-integral quantization for this model, and

then the quantal canonical symmetries will be further investigated. The canonical
momenta π

µ
a , π+ and π associated with Aa

µ, ϕ and ϕ+ are given by

πµ
a = Fµ0

a + κ

4π
ε0µνAa

ν (6.3)

π+ = (D0ϕ)+ (6.4)

π = D0ϕ (6.5)

The constraints are

a
1 = π0

a ≈ 0 (6.6)

a
2 = Diπ

i
a + κ

4π
εij ∂iA

a
j ≈ 0 (6.7)
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where the convention ε012 = ε12 = 1 is used. It is easy to check that the a
1 and

a
2 are first-class constraints. According to the rule of path integral quantization of

constrained Hamiltonian system, for each first-class constraint, a corresponding
gauge conditions should be chosen. Consider the Coulomb gauge,

�a
2 = ∂iAa

i ≈ 0 (6.8)

The consistency requirement of this gauge constraint implies another gauge con-
ditions

�a
1 = ∂iπ

a
i + ∇2Aa

0 − f a
bcA

b
i ∂

iAc
0 ≈ 0 (6.9)

One can find that det |{a,�b}| = det Mab
c , where

Mab
c = (

δab∇2 − f a
bcA

c
i ∂

i
)
δ(x − y) (6.10)

The factor δ(∂iAa
i ) det Mab

c can be replaced by δ(∂µAa
µ) det Mab

c (Foussats et al.,
1995, 1996; Sundermeyer, 1982), where

Mab
c = (δab∂2 − f a

bcA
c
µ∂µ)δ(x − y) (6.11)

Thus, the phase-space generating functional of the Green function for this model
can be written as (Li, 1997; Li and Long, 1999)

Z[J ] =
∫

D Aa
µ Dπµ

a D ϕ D π D ϕ+ D π+ D λ D C̄aD Ca

exp

{

i

∫
d3x

(
LP

eff + Jµ
a Aa

µ + J+ϕ + ϕ+J + J̄aC
a + C̄aJa

)
}

(6.12)

where J
µ
a , J+, J, J̄a and Ja are exterior sources with respect to Aa

µ, ϕ, ϕ+, Ca and
C̄a respectively, and

LP
eff = LP + Lg + Lgh + Lm (6.13)

LP = πµ
a Ȧa

µ + π+ϕ̇ + ϕ̇+π − HC (6.14)

Lg = − 1

2α2

(
∂µAa

µ

)2
(6.15)

Lgh = −∂µC̄aDµbC
b

(
Da

µb = δa
b∂µ − f a

bcA
c
µ

)
(6.16)

Lm = λa
1

a
1 + λa

2
a
2 − 1

2α1

(
�a

1

)2
(6.17)

and HC is a canonical Hamiltonian density.
Let us consider BRS (Beechi–Rouet–Stora) transformation:

δϕ = −iτT aCaϕ, δϕ+ = iτϕ+T aCa (6.18a)
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δCa = 1

2
f a

bcC
bCc, δC̄a = − 1

α2
∂µAa

µ (6.18b)

δAa
µ = τDa

µbC
b (6.18c)

where τ is a Grassmann parameter. The action connected with the term
LP + Lg + Lgh is invariant under the BRS transformation (5.18) at the quantum
level. The variations of the first-class constraints under the gauge transformation
(6.18c) are within the constraint hypersurface (Li, 1995c). Thus δ Lm ≈ 0 under
the transformation (6.18). Therefore, δIP

eff ≈ 0 under the transformation (6.18).
From (3.8) one gets weak conserved BRS quantity at the quantum level.

QB =
∫

d2x
(
πµ

a δAa
µ + π+δϕ + δϕ+π + R̄aδC

a + δC̄aRa

)
(6.19)

where R̄a and Ra are canonical monenta conjugate to Ca and C̄a respectively.
If we only consider the transformation of Aa

µ, ϕ and ϕ+, fixing the ghost
fields,

δϕ = −iτT aCaϕ, δϕ+ = iτϕ+T aCa

δAa
µ = τDa

µbC
b, δCa = δC̄a = 0 (6.20)

under the transformation (6.20), the change of LP
eff is given

δ LP
eff = Vaε

a(x) = Faε
a(x) + f a

bc∂
µC̄a∂µεc(x) (6.21)

within the constraint hypersurface, where εa(x) = τCa(x), and Fa do not contain
the derivatives of the εa(x). From (3.8), one obtains weak conserved PBRS quantity
at the quantum level (P stands for “partial”)

Q =
∫

d2x
(
πµ

a δAa
µ + π+δϕ + δϕ+π − f a

bc
˙̄C

a
CbCc

)
(6.22)

This quantal conserved quantity Q differs from QB in (6.19).
The above conserved quantity QB and Q can also be derived by using the

configuration-space generating functional as performed in Section 5.
As is well known, BRS charge annihilates vacuum state, this conserved PBRS

charge may also impose some supplementary conditions on physical states as well
as BRS charge charge and ghost charge. Work along this line is in process.

The effective canonical action is also invariant under the spatial rotation trans-
formation in the (x1, x2) plan, one can obtain the conserved angular momentum
for non-Abelian CS theories at the quantum level.

J =
∫

d2x

[

πµ
a

(

x2
∂Aa

µ

∂x1
− x1

∂Aa
µ

∂x2

)

+ πµ
a

(∑

12
µν

)]

Aa
ν
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+π+
(

x2
∂ϕ

∂x1
− x1

∂ϕ

∂x2

)

+
(

x2
∂ϕ+

∂x1
− x1

∂ϕ+

∂x2

)

π

+ R̄a

(

x2
∂C̄a

∂x1
− x1

∂C̄a

∂x2

)

+
(

x2
∂C̄a

∂x1
− x1

∂C̄a

∂x2

)

Ra (6.23)

where (
∑

jk )µν = gjµgkν − gjνgkµ. Thus, we see that the quantal conserved an-
gular momentum in this model differs from classical Noether one in that one
needs to take into account the contribution of angular momentum of ghost fields
in Maxwell-non-Abelian CS theory. We do not think the conclusions in classical
theories are always validity in quantum theories (Antillon et al., 1995; Banergee
and Chakraborty, 1996). It had been pointed out that in some Abelian CS models
where is no ghost field in quantized effective Lagrangian, and the fractional spin
properties are preserved at the quantum level (Banerjee, 1994; Kim et al., 1994).
The property of fractional spin in non-Abelian CS theories needs further study in
quantum theories.

7. CONCLUSIONS AND DISCUSSION

Classical NI refers to the invariance of an action integral of the system under
the local transformation. Here we study the quantal local and non-local symmetries
for a system with a regular/singular Lagrangian. The path integrals provide a
useful tool. In the theory of path integral quantization for a dynamical system, the
phase-space path integrals are more fundamental than configuration-space path
integrals. Based on the phase-space generating functional of the Green function
for a system with a regular/singular Lagrangian, the quantal canonical NI under
the local and non-local transformation in extended phase space have been derived,
respectively. These identities hold true no matter whether the Jacobian of the
corresponding transformation is equal to unity or not. For a system with a regular
Lagrangian, the expressions of quantal canonical NI coincide with the classical
ones, but for a singular Lagrangian one must use an effective canonical action
IP

eff instead of canonical action IP in the corresponding expressions. For a gauge-
invariant system a simpler and more useful quantization scheme is FP trick, from
which the configuration-space generating functional of the Green function can be
formulated. Based on this generating functional, the quantal NI under the local
and non-local transformation in configuration space for gauge-invariant system
have been also deduced. These identities also hold true whether the Jacobian of
the transformation is equal to unity or not. It had been shown that in a certain case,
the quantal NI may convert to quantal strong and weak conservation laws, this
algorithm to derive quantal (weak) conserved quantities is different from quantal
first Noether theorem. We give some preliminary applications of above results
to YM fields. The quantal conserved quantities for local transformation are also
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found. The application of above formulation to non-Abelian CS term coupled to
the scalar field is also given, the quantal conserved BRS and PBRS quantities are
obtained. The quantal conserved angular momentum for non-Abelian Maxwell
CS theory is found, which differs from classical Noether one in that one needs
to take into account the contribution of angular momentum of ghost fields. But
in the Abelian CS theories there is no ghost field, the angular momentum at the
quantum level coincides with classical Noether one. The property of fractional
spin is preserved at the quantum level in the Abelian CS theories (Banerjee, 1994;
Kim et al., 1994; Li, 1996).

It had been pointed out that the anomalies can be viewed as a result of
the non-invariance of the functional measure under the symmetry transformation
(Fujikawa, 1980, 1981). The result (6.23) indicates that the anomalies may ap-
pear in a case with the invariance of the functional measure under a symmetry
transformation.

The conserved angular momentum (6.23) is not gauge invariant as in the
Abelian CS theories (Banerjee, 1994; Kim et al., 1994). Those angular momentum
had been constructed from the symmetric energy-momentum tensor for Abelian
CS theories (Banerjee, 1993, 1994; Kim et al., 1994) in order to preserve those
gauge invariant. For non-Abelian CS theories, we can consider a gauge-translation
transformation

φ
′
(x + ε) = exp{igενAν(x)}φ(x)

A
′
µ(x + ε) = exp{igενAν(x)}Aµ(x) exp{−igενAν(x)}

− i

g
∂µ exp{igενAν(x)} exp{−igενAν(x)} (7.1)

and can derive the gauge-invariant energy-momentum tensor Tµν , where φ stands
for ϕ, ϕ+, Ca and C̄a , and Aµ are non-Abelian CS gauge fields, and εν are param-
eters. The coefficient κ connected with CS term also appears in the expression of
the angular momentum J = ∫

d2xεij xiT0j , the property of fractional spin can be
further study, and work along these lines is in progress.
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